Aziza Suleymanzade

312-952-4343 | azizasuleymanzade@g.harvard.edu

EDUCATION	
University of Chicago Ph.D. Physics MS Physics	Aug 2021
- Ph.D. Thesis: "Millimeter wave photons for hybrid quantum systems."	
University of Cambridge MPhil Physics	Aug 2014
- MPhil Thesis: "Ultracold atoms experiment for trapping ³⁹ K in an optical box trap."	
Harvard University AB Physics	Aug 2013
ACADEMIC DISTINCTIONS	
Boeing Quantum Creators Prize, Chicago	2024
Debared Lin Award / ABS DAMOD thesis prize winner	2023

Deborah Jin Award/APS DAMOP thesis prize winner	2023
for outstanding doctoral thesis research in Atomic, Molecular and Optical Physics	
2023 Rising Stars in Physics, UC Berkeley	2023
HQI postdoctoral fellow, Harvard University	2021-present
J de Karman fellow, dissertation prize	2020-2021
Winstein Prize and Distinguished Service Award, Physics Department, University of Chicago	2017, 2019
NSF MRSEC Graduate Student Fellow	2017-2018
Lionel de Jersey Harvard-Cambridge Scholar a year-long study at the University of Cambridge	2013-2014

RESEARCH EXPERIENCE

UC Berkeley Physics Department Assistant Professor	starting 2025
Harvard University Physics Department Postdoctoral Researcher HQI fellow PI: Mikhail Lukin	2021-2025

A strongly coupled cavity-QED system with Silicon vacancy (SiV) defects in diamond nanocavities:

- efficient and high-fidelity spin-photon entanglement for electron and nuclear spins of the SiV⁻ defect, error-detected spin-photon gates, long-distance entanglement distribution, single photon generation, distributed blind computing, long-baseline entangled telescope arrays

University of Chicago Physics Department	2014-2021
Doctoral Researcher J. de Karman fellow PIs: Jonathan Simon, David Schuster	

A hybrid cavity-QED system with Rydberg atoms:

- cryogenic hybrid quantum system for interconverting and entangling single optical and mm-wave photons in cavities using Rydberg atoms as mediators, quantum-limited mm-wave to optical transduction with Rydberg atoms with internal conversion efficiency of 58%, conversion bandwidth of 360 kHz and added noise of 0.6 photons Millimeter wave circuit-QED platform:

- design, fabrication and measurement of \ 3D and 2D superconducting mm-wave devices at 100GHz for hybrid cavity- and circuit-QED platforms; including high-Q seamless resonators with subwavelength mode volume and optical access for cold atoms experiments, mm-wave photonic crystal cavity, and mm-wave Fabry Perot cavity

University of Cambridge Atomic Mesoscopic Optical Physics	2013-2014
Masters Researcher Lionel de Jersey Harvard-Cambridge fellow PI: Zoran Hadzibabic	
Many-body quantum systems of ultra-cold atoms:	
- a new experiment for generating a Bose-Einstein Condensate of ³⁹ K in a uniform trap potential	
Harvard University Particle Physics and Cosmology Laboratory ATLAS experiment, LHC	2010-2012
Undergraduate Researcher Herchel Smith fellow PI: Melissa Franklin	